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Abstract - This is a preliminary report on the development of a diffusion based inverse solver for the
Helmholtz equation in the frequency domain, in the context of optical tomography. This utilizes a great
simplification of the previously developed Elliptical Systems Method with the use of a certain new PDE
of the 2nd order, with related boundary and special conditions. In this report we consider the recovery
of just the absorption coefficient with both theory and numerical examples, focusing on the case of
incomplete data collection using multiple continuous wave (zero frequency) sources. The incomplete
data collection is over a rectangular region and includes use of sources and detectors limited to the top
and bottom sides, detectors on the transmitted sides only and detectors on the back-reflected sides only.

1. INTRODUCTION
It is common in applied work in engineering such as the search for buried land mines, or in medical

imaging for diagnosis of possible breast tumors, to have only limited boundary measurement data, back
reflected in the first case or transmitted in the second. Here we formulate the problem as one of coefficient
recovery from incomplete boundary data in inverse problems. In this work we are using a diffusion partial
differential equation (PDE) as an approximation for the more accurate transport PDE [2].

The Elliptic Systems Methods (ESM) was originally introduced [8] for the solution of the time de-
pendent diffusion equation using time dependent data with just one source, but many detectors. One of
the notable advantages of this whole family of methods is that they use a differential form as contrasted
to an integral form, which leads to sparse matrix systems instead of full ones, with obvious computa-
tional advantages. Many experiments, including the case of incomplete data collection, were reported in
[9]-[10]. In the ESM the inverse problem is reduced to a system of overdetermined second order bound-
ary value problems, with the time variable integrated out using Legendre polynomials, in effect using a
truncated generalized Fourier series. As one approach to resolve this over-determination, a fourth order
biharmonic equation was introduced to provide a well-posed problem. In [8]-[10] the 4th-order elliptic
system was solved by using a mixed form of the finite element method (FEM), splitting the system into
two adjoint systems of 2nd-order PDE’s which were then solved using quadratic elements over triangles.
With the most standard number of such Legendre polynomials being four, this led to a coupled system
of eight 2nd order PDE’s. Recently in [13] an improved implementation of this method has been de-
veloped which, among other improvements, directly solves the 4th-order biharmonic type system with
Bogner-Fox-Schmit bi-cubic elements [4] using the FEM over rectangles. This led to a coupled system
of four 4th order PDE’s, in the form of generalized biharmonics, which has given improved coefficient
recovery results.

Also the ESM has been extended [11] to applications involving the search for near surface land mines,
with the source in the form of ground penetrating radar, leading to the use of back-reflected data. In
this original 2nd generation improvement of the ESM, the resulting equations are still solved indirectly
but without the complicating need to introduce truncated Fourier series. A second innovation was a
major improvement in the approach used to solve for the material properties (absorption and diffusion
coefficients) using the measured (or simulated) data readings, by adding this data to the original system,
and using this overdetermined form to recover the material properties though an iterative process in
frequency. This allowed staying with the 2nd order formulation, although an integro-differential equation
with a Volterra-like integral was required. This integro-differential equation was the price paid for
allowing a differentiation to temporarily eliminate the unknown coefficient, similar in many ways to [8].
Finally in [12] a notable improvement was made that eliminated the need for this complicating factor,
the integro-differential equation, allowing for a direct solution.

In this paper we are generalizing the results of [12] to the diffusion process [2] in the frequency
domain. The main complicating factor is that the source is an internal point source rather then an
exterior plane wave, and the practical need to go from the two data sets used on the air/soil boundary in
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Figure 1: General setup for external and internal regions.

[11]-[12] to just one incomplete data set. In this paper we are developing for the first time with the ESM
family of methods, an approach that allows for the use of many sources (and also if we wished many
frequencies), and incorporates the many advantages of [12]. In this development we can use a mixture
of many kinds of incomplete data: data on some sides alone, transmitted data alone or back-reflected
data, or any combination.

The plan for this paper is that in Section 2 we will explain the physical problem and the Helmholtz
equation used to model it. In Section 3 effective solution methods to solve the forward problem are
explained. The new inverse solver for this diffusion process will be introduced in Section 4, and slightly
expanded on in Section 5.3. Of primary interest in Section 4 are the treatments of the internal source
term and the boundary conditions (BC’s). Some computational details and speed-ups are given in Section
5. Section 6 contains numerical examples, mostly using incomplete data sets, with some conclusions in
Section 7.
2. PHYSICAL PROBLEM AND MODEL

We begin by modelling the propagation of light in human tissue as a diffusion process in the frequency
domain [2], see Figure 1. Consider a domain Ω with boundary ∂Ω, a modulated frequency ω and a
source at location x0. We will refer to this as the physical domain. We shall assume that the values for
absorption a0 and diffusion D are constant, except for certain small inclusions inside Ω away from the
boundary ∂Ω with variable absorption and/or diffusion, as shown in Figure 1. This can be modelled [1]
by the complex Helmholtz equation:

−∇ · (D(x)∇u(x)) +
(

a(x) +
iω

c

)
u(x) = δ(x− x0) x ∈ G (1)

u(x) = 0, x ∈ ∂G (2)

over a certain extended domain G with homogeneous Dirichlet BC’s on ∂G. We will refer to the domain
G as the computational domain, and as will be seen we will solve not only this forward problem over
G, but also the related inverse problem of recovering the inclusion values. In this preliminary report
we consider the recovery of just the absorption coefficient a(x), so D(x) ≡ D is constant over Ω. We
nevertheless display D throughout in a way that easily allows for future generalizations. It should also
be noted [2] that the diffusion coefficient has a dependency on absorption. However for media low in
absorption compared with scattering such as are simulated here, this dependency is sufficiently small as
to justify ignoring it. Finally, while the theory developed here will be applicable to both variable source
positions and variable frequencies, this report will simulate only the continuous wave (CW) case where
the frequency ω = 0.
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3. FORWARD PROBLEM
The solution must be calculated for each source/frequency pair and tabulated at each detector po-

sition. We place this data in tables representing the top, bottom, left and right sides for detector data
(complex values), and later use selected subsets. There were two approaches we considered for solving
the forward problem (1-2):

3.1 DIRECT SOLUTION APPROACH
Here we use a direct solution of (1-2). For our solution method we used the FEM with FEMLAB

[5]. This worked well, and using the weak form for the impulse function was straightforward. Since we
were solving for many sources, it was critical that for each run to introduce a node point (vertex) at the
current source position. This would be exchanged with each new source position.

3.2 ANOMALOUS EQUATION APPROACH
We have found that a particularly effective computational method for the forward problem, being

both rather simple computationally and avoiding any difficulties from the interior unit impulse function
δ(x− x0), is to solve for the difference

v(x) = u(x)− u0(x),

where u(x) is the solution to a new problem with perturbed absorption values a(x) = a0 + ∆a(x) with
∆a(x) being the perturbed value of the constant absorption value a0. The PDE that generates v(x) is:

−∇ ·D∇v(x) +
(

a(x) +
iω

c

)
v(x) = −∆a(x) · u0(x) (3)

and x ∈ G with the BC: v(x) = 0, x ∈ ∂G as before. The homogeneous solution u0(x) thus only needs to
be evaluated inside the inclusions, as elsewhere ∆a(x) is zero. Here and elsewhere we efficiently evaluate
the homogeneous solution u0(x) by the method of images, a series type method, which quickly generates
an arbitrarily accurate solution.

The derivation of the anomalous equation is straightforward: Let u(x) be the solution of a Helmholtz
equation with a perturbed absorption a(x) and u0(x) be the solution of the original PDE with constant
diffusion and absorption terms D and a0. Thus:

−∇ ·D∇u0(x) +
(

a0 +
iω

c

)
u0(x) = δ(x− x0)

−∇ ·D∇u(x) +
(

a(x) +
iω

c

)
u(x) = δ(x− x0)

with BC’s u(x) = u0(x) = 0 for x ∈ ∂G. Letting u(x) = u0(x)+v(x), a(x) = a0+∆a(x) and subtracting
gives:

−∇ ·D∇v(x) +
(

a(x) +
iω

c

)
v(x) + ∆a(x)u0(x) = 0

which immediately yields the anomalous equation (3) in v(x), with the BC: v(x) = 0, x ∈ ∂G.
The anomalous equation must be solved once for each source and each frequency. Complex valued

data is collected at discretely placed detectors along the physical boundary, and stored for later use.

4. INVERSE PROBLEM
We specify the inverse problem as follows to recover the interior absorption coefficient a(x) = a0 +

∆a(x): the known (rectangular) geometry; the constant diffusion term D; the background constant
absorption term a0; the locations x0 and modulated frequencies ω of a series of point sources of unit
impulse strength; and the location and readings from a series of detectors. It is loosely assumed that the
perturbations ∆a(x) are isolated and sufficiently small. Each source can use different sets of modulated
frequencies and have readings for detectors on: all sides; just the top and bottom sides; back-reflected
data alone; or transmitted data alone. The primary examples will focus on problems with incomplete
data collection, as illustrated above.
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4.1 THE INVERSE SOLVER
The inverse solver developed in this paper is derived by modifying the anomalous equation, using a

normalized solution. Consider the change of variable:

z(x, xk
0 , ωk) =

v(x, xk
0 , ωk)

u0(x, xk
0 , ωk)

. (4)

Substituting v = z · u0 into the anomalous equation (3) gives:

(−∇ ·D∇z) u0 − 2D∇u0 · ∇z − (∇ ·D∇u0) z +
(

a0 + ∆a(x) +
iω

c

)
z · u0 = −∆a(x) · u0.

Dividing by u0 and simplifying gives:

−∇ ·D∇z − 2D
∇u0

u0
· ∇z +

(
−∇ ·D∇u0 + (a0 +

iω

c
) · u0

)
z

u0
+ ∆a(x)z = −∆a(x)

Since u0 satisfies the unperturbed diffusion equation (1) we finally get:

−∇ ·D∇z − 2D
∇u0

u0
· ∇z +

δ(x− x0)
u0

z + ∆a(x)z = −∆a(x). (5)
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Figure 2: (a) Inclusion configuration showing a(x) = a0 + ∆a and (b) Plot of z for a source located at
(20, 30)mm for a medium with the previous 4 inclusions using ω = 0 (CW case).

The above substitution z =
v

u0
has been part of this family of methods for many years [8]-[13]. In

Figure 2b this function is plotted. In this plot the advantage of using such a normalized perturbataion
is clear, as it changes rapidly around all of the inclusions, unlike for example the original perturbation,
whose primary change is around just those inclusions close to the source. We are now ready to resolve
two key questions: what to do with the unit impulse term δ(x− x0) and what to use for the boundary
conditions? Since δ(x− x0) is zero for all x except for the source position, and since clearly z must be
zero at the source x0, due to the singularity in u0, our approach is to omit the term with δ(x−x0), and
add the auxiliary condition that at the source x0, z(x0) = 0.

A visual inspection of Figure 2b with the computed values z = v
u0

, where v(x) was computed from
the original anomalous equation using the inclusion values of Figure 2a, and u0(x) was computed by the
method of images, showed contours that appear orthogonal to the boundary throughout the domain.
This would suggest that ∂z

∂n = 0 at least to a significant level of approximation. A second order expansion
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of ∂z
∂n on the boundary of the domain (where both u0(x) = 0 and v(x) = 0) indeed gives the following

approximation for ∂z
∂n :

∂
(

v
u0

)

∂n
=

u0
∂v
∂n − v ∂u0

∂n

u2
0

≈
1
2

[
∂u0
∂n

∂2v
∂n2 − ∂2u0

∂n2
∂v
∂n

]

(
∂u0
∂n

)2

which both explains the consistent visual observations, and confirms the approximation since the partial
derivatives of v are in general very much smaller than ∂u0

∂n . Thus we will use as the boundary condition
for the normalized anomalous equation: ∂z

∂n |∂G = 0. A similar equation was used in the time-dependent
studies [8]-[10],[13]. We can now summarize our formulation of the normalized anomalous equation, for
the source at x = x0:

−∇ ·D∇z − 2D
∇u0

u0
· ∇z + ∆a(x)z = −∆a(x) for x ∈ G\x0 (6)

∂z

∂n
|∂G = 0 (7)

z(x0) = 0 (8)

While not exact due to the approximation in the BC’s, this system gives good results as long as ∂v
∂n and

∂2v
∂n2 are slowly changing near ∂G. This should be the case when there is a homogeneous band of constant
values of a(x) near the boundary ∂G.

We will now use over-determined data from a series of physical measurements (or computer sim-
ulations) with varying sources and modulated frequencies to turn the above formula into an iterative
inverse solver. For each source xk

0 with modulated frequency ωk let uk
0 = u0(x, xk

0 , ωk) and consider the
overdetermined systems:

−∇ ·D∇zk − 2D
∇uk

0

uk
0

· ∇zk + ∆ak(x)zk = −∆ak(x) for x ∈ G\xk
0 (9)

∂zk(x)
∂n

= 0, x ∈ ∂G (10)

zk(xk
0) = 0 (11)

zk(x, xk
0 , ωk) = f(x, xk

0 , ωk), x ∈ Γk (12)

where f(x, xk
0 , ωk) = û(x,xk

0 ,ωk)−u0(x,xk
0 ,ωk)

u0(x,xk
0 ,ωk)

and û represents data at mesh points x along those parts of

the physical boundary Γk where data is collected from detector readings or from the simulations (forward
runs) of this paper, and expanded for example by smoothing and interpolation. Note that Γk will in
general vary with k, for example in the case of transmitted data, Γk would be that part of ∂Ω opposite
the source xk

0 .
Begin with k = 1 and ∆a1(x) ≡ 0. Iterate (9-12) repeatedly using the various sources and modulated

frequencies, updating over the physical region by

∆ak+1(x) = ∇ ·D∇zk + 2D
∇u0

u0
· ∇zk −∆ak(x)zk (13)

or

∆ak+1(x) =
(
∇ ·D∇zk + 2D

∇u0

u0
· ∇zk

)
/(1 + zk). (14)

In preliminary studies we have found no particular differences between the results using either the more
conservative (13) or the more aggressive (14) formula above.

4.2 ALGORITHM FOR THE INVERSE SOLVER
The work of the previous section can be encapsulated as an algorithm as follows:

1. Include grid points for the FEM mesh along the physical boundary, at least where data is available.
2. For each source/frequency pair (xk

0 , ωk), k = 1..Nk, construct the function f(x, xk
0 , ωk).
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3. Set the initial perturbation term ∆a1(x) = 0.
4. Make P passes, p = 1, 2, ...P
5. For k = 1, 2, ...Nk

Solve (9-12) for zk, using the normal equations method (See Section 5.2)
Use (13 or 14) to calculate ∆ak+1

End For
Set ∆a1(x) = ∆aNk+1(x)

End passes

In Section 5.3 we shall refer to this method as the sequential solution method, where the perturbation
is updated after each z solve. An alternative method, called averaging is proposed there, and the
approaches can be mixed from pass to pass.

5. COMPUTATIONAL APPROACH AND SOME SPEED-UPS
All of this work was performed using a combination of matlab and FEMLAB [5]. The code for the

forward solver (using the anomalous equation approach of Section 3.2) going though many sources (and
if desired many frequencies), and outputting values at selected detector locations, was about 300-400
lines. The inverse solver was from 1000-1500 lines, including considerable informative graphics. We have
found three major methods of speeding up the computations:

5.1 PRECOMPUTATION OF ∇u0
u0

The values of the homogenous solution and the coefficient ∇u0
u0

depend solely on the geometry and
the constant values D and a0, and thus can be precomputed. The preferred method is the method of
images, extended to this case.

5.2 NORMAL EQUATIONS SOLUTION USING PCG WITH A PRECONDITIONER
On the first pass through the system the least squares matrix for the inverse solver without any

inclusion data is evaluated for each value of k. This gives an overdefined linear system of the form
Akx = b. The resulting normal equations matrix A∗kAk is then evaluated and factored using Cholesky
factorization [6], with the resulting factorization being stored to disk. Each time the normal equations
matrix is resolved on later passes these factorizations are recalled and used as preconditioners for the
preconditioned conjugate (pcg) gradient method [7]. This is similar to the approach used in [12], in that
only one preconditioner need be computed for many solutions to nearby systems. This speeds up the
solvers by a factor of 30 or so, with accurate solutions typically found in just 3-7 iterations.

5.3 AVERAGING VERSUS SEQUENTIAL
An alternative to the algorithm described in Section 4.2 is to make all computations in one particular

pass using a fixed value for the estimated inclusions ∆a in (9) and also in (13), if the conservative
recovery equation is used. Then after each pass average the various results obtained from (13 or 14) over
that pass, to obtain the fixed value of ∆a for the next pass. This makes the ordering not a factor, and
presents the opportunity to perform parallel computations on a Beowulf cluster.

In Section 6 for each example we start with 10 sequential passes followed by 20 averaging passes.
An advantage of using the sequential method in the early passes is to approach a reasonable ∆a more
rapidly. However the averaging approach has so far proven superior in our numerical studies for obtaining
a finalized result.

6. NUMERICAL EXAMPLES
All of our examples will attempt inclusion recovery in an otherwise homogeneous region with 4

inclusions as shown and detailed in Figure 2a. For the sample problems we have considered, the com-
putational region was [−52, 52]mm × [−32, 32]mm and the physical region, with sources and detectors
on the boundary, was [−50, 50]mm × [−30, 30]mm. The background absorption a0 = .004mm−1, the
constant diffusion D = .33mm and the absorption values inside the four inclusions are as displayed. The
grid uses ∆x = ∆y = 2mm. Various increasingly limited choices of sources and detectors will be made.
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All cases but the first will be examples of incomplete data collection (IDC), where the detector locations
are on some sides only, depending on where the corresponding source is located. In all four examples
presented below the sequential replacement method is used for the first 10 passes, and then averaging is
used for 20 more.

6.1 FIRST EXAMPLE: COMPLETE DATA COLLECTION; ALL 4 SIDES
Twelve sources are used with a CW signal (ω = 0): 4 on the top and bottom, 2 on each side.

Detectors are placed every 2mm on all four sides of the physical boundary ∂Ω. The matrix solver for
the least squares solution on a 3.06 GHz PC takes about 30 seconds a matrix for the first pass, and
about .75 seconds/pass for the rest using the pcg method. The results are shown in Figure 3, and appear
successful, accurately identifying all four inclusions.
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(a) Contour plot of the recovered inclusions. (b) Plot of the values of the recovered inclusions.

Figure 3: Plots of the recovered inclusions for Example 1. Sources and detectors on all four sides.

6.2 SECOND EXAMPLE: IDC; TOP AND BOTTOM ONLY
Eight sources are used with a CW signal: the top and bottom each having 4. Detectors are placed on

the top and bottom sides only. Both transmitted and back-reflected data readings are used. The results
are shown in Figure 4, and again appear successful, similar to Example 1.

6.3 THIRD EXAMPLE: IDC; TRANSMITTED DETECTORS ONLY
Eight sources are used with a CW signal: the top and bottom each having 4. For each source,

detectors are placed on the opposite side only. The results are shown in Figure 5, and appear successful
for the three leftmost inclusions, but miss the smaller inclusion to the far right. In general the results
are somewhat degraded from the results of Examples 1 and 2. A small artifact has appeared to the top
left of center.

6.4 FOURTH EXAMPLE: IDC; BACK-REFLECTED DETECTORS ONLY
Eight sources are used with a CW signal: the top and bottom each having 4. For each such source,

detectors are placed on the same side only (but not close to the source). The results are shown in
Figure 6, and appear reasonably successful for the two leftmost of the three positive-valued inclusions.
The small positive-valued inclusion to the right is identified rather accurately but its value is not much
greater than the background. The negative-valued inclusion 2nd from the right is missed altogether, but
this is to be expected given the weak back-reflected interaction for such central locations far from the
sides. Two low-valued artifacts have appeared to the top and also to the right of the circular inclusion.
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(a) Contour plot of the recovered inclusions. (b) Plot of the values of the recovered inclusions.

Figure 4: Plots of the recovered inclusions for Example 2. Sources on the top and bottom sides only,
using both transmitted and back-reflected detector values.
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(a) Contour plot of the recovered inclusions. (b) Plot of the values of the recovered inclusions.

Figure 5: Plots of the recovered inclusions for Example 3. Sources on the top and bottom sides only,
using just transmitted detector values.
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7. CONCLUSIONS
Previous work using the ESM involving either time dependent diffusion tomography [8]-[10],[13]

or ground penetrating radar [11]-[12] (with variable modulated frequencies) has been simplified and
extended to the application of diffusion tomography in the frequency domain. The results of this process
are summarized in the algorithm of Section 4.2 and expanded in Section 5. Important steps in this
development were the treatment of the internal singularity at the source x0, including solving the inverse
problem over the extended region G instead of the physical region Ω and the elimination of excessive
boundary data requirements. One potential application of this work as it matures would be to the
diagnosis of female breast cancer, given a positive result from a mammogram reading. The experimental
setup with sources/detectors just on the top or bottom would lend itself well to this type of work.
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(a) Contour plot of the recovered inclusions. (b) Plot of the values of the recovered inclusions.

Figure 6: Plots of the recovered inclusions for Example 4. Sources on the top and bottom sides only,
using just back-reflected detector values.

This preliminary report was limited to the CW case (ω = 0). A particular emphasis of this current
work has been in the study of limited data sets. A challenging example with four inclusions, some
positive, some negative-valued, and of various magnitudes and shapes was considered with four different
data sets for the overdetermined system (9)-(12). The cases of complete data sets, or incomplete data
sets limited to the top and bottom, gave the best results with identification of all four inclusions. With
transmitted data alone on the top and bottom the inclusion with the smallest capacity [3] (product of
size and magnitude) was missed, but the other three inclusions were successfully recovered, including the
negative-valued one. With back-reflected data alone on the top and bottom the negative-valued inclusion
was completely missed, presumably due to its central location. Interestingly the inclusion with the small
capacity in the upper right corner was recovered, but with a small value, similar to the background. The
two larger inclusions (one large in area, one in capacity) were easily recovered.
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